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Vector-borne disease transmission is often typified by highly focal trans-

mission and influenced by movement of hosts and vectors across different

scales. The ecological and environmental conditions (including those created

by humans through vector control programmes) that result in metapopula-

tion dynamics remain poorly understood. The development of control

strategies that would most effectively limit outbreaks given such dynamics

is particularly urgent given the recent epidemics of dengue, chikungunya

and Zika viruses. We developed a stochastic, spatial model of vector-

borne disease transmission, allowing for movement of hosts between

patches. Our model is applicable to arbovirus transmission by Aedes aegypti
in urban settings and was parametrized to capture Zika virus transmission

in particular. Using simulations, we investigated the extent to which two

aspects of vector control strategies are affected by human commuting pat-

terns: the extent of coordination and cooperation between neighbouring

communities. We find that transmission intensity is highest at intermediate

levels of host movement. The extent to which coordination of control activi-

ties among neighbouring patches decreases the prevalence of infection is

affected by both how frequently humans commute and the proportion of

neighbouring patches that commits to vector surveillance and control activi-

ties. At high levels of host movement, patches that do not contribute to

vector control may act as sources of infection in the landscape, yet have com-

parable levels of prevalence as patches that do cooperate. This result

suggests that real cooperation among neighbours will be critical to the devel-

opment of effective pro-active strategies for vector-borne disease control in

today’s commuter-linked communities.
1. Introduction
Effective prevention and mitigation of outbreaks of infectious diseases relies on

being able to predict patterns in the dynamics of spread of exposure risks over

space and time. For vector-borne diseases, this implies understanding the fac-

tors that influence both host and vector ecologies, and the epidemiological

patterns that emerge as a result. In a world with shifting climates [1], altered

habitats [2] and increasing travel distances in the course of many people’s

normal lives [3–5] with associated human-mediated transport of both diseases

and vectors [6,7], even just understanding the basic ecological drivers of the

system can be complicated. Naturally, understanding mitigation and control

adds yet another layer of complexity.

Interruption of ongoing transmission can, in principle, target any stage in

the parasite’s life cycle. Medical interventions that focus on hosts target either

infected individuals through treatment, or susceptible hosts through prophy-

laxis or vaccination. Physical interventions, such as bed nets, can prevent
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vectors from biting hosts, disrupting transmission between

hosts and vectors in both directions. There are also a

myriad of interventions that focus on the vector directly.

While there are ongoing efforts to control some diseases

by decreasing vector competence (e.g. through the release

of mosquitoes harboring infection-blocking Wolbachia
strains [8,9]), most vector-targeted interventions focus on

decreasing vector population sizes or vector longevity. This

can be done by purposefully altering habitat availability,

for instance through environmental management or by

removal of vessels holding standing water [10]. Populations

can also be controlled actively, through sterile male releases,

or application of adulticides or larvicides [11–13].

In the case of newly emerging vector-borne pathogens,

the vast majority of our epidemic-fighting toolkit relies on

the vector-targeted strategies for the simple reason that we

rarely have existing medical treatments or preventive

measures that are effective against novel threats. This does

not, however, imply that these strategies are without their

own set of challenges. Vector-targeted strategies, by their

nature, have localized geographical regions of direct effect.

Any broader secondary or community-level impacts, either

ecologically or epidemiologically, are driven by the direct

impact of a local intervention on a local area. In some

cases, such as when eliminating potential larval habitat by

removing or chemically treating standing water, those per-

forming the intervention can focus on as small a scale as a

single residence. Even wider-scale efforts are frequently still

relatively geographically limited in their immediate effect,

such as spraying insecticides from trucks or releasing them

from low-flying airplanes: decisions frequently made by

city-, county-, district- or state-level public health or vector

control agencies, or at a smaller scale, by private contractors.

There have been some very successful instances of large-

scale coordinated vector control efforts. These notably

include the mass scaling up of insecticide-treated bed net cov-

erage across sub-Saharan Africa [14,15], or the Aedes aegypti
elimination efforts in Latin America in the 1930s [16]. How-

ever, it is still the case that local/regional vector control

efforts are most frequently undertaken at the same level as

their direct effect. In other words, two neighbouring munici-

palities may undertake very different control strategies,

despite facing similar risks. These differences may be more

drastic, even between regions that are geographically close

to each other, if they face different risks from vector popu-

lations. Such differences could be due to, for instance,

different distributions in land usage, or unequal access to

resources needed for effective control. Control decisions

may reasonably diverge, even among neighbours, based

on many factors. These include differences in ecological via-

bility of vector habitat, epidemiological susceptibility of the

resident population, different sizes in resident host popu-

lations, different access to medical resources for prevention

and/or treatment and even different perceptions of risk

associated with vector populations and/or infection. Even if

there is consensus among decision-makers across regions

about the need for vector control efforts, the timing,

frequency and efficacy of control measures may vary.

Unfortunately, local/regional vector population sizes are

not the only drivers of epidemiological dynamics across the

broader landscape. Even if the vector species responsible

for transmission of a particular pathogen does not disperse

far or frequently enough to cause concern for neighbouring
regions about the efficacy of adjacent regions’ control

decisions, humans themselves routinely travel across dis-

tances that are likely to span areas controlled by different

decision-makers. Especially around dense urban centres,

people routinely travel many miles each day as they commute

to employment or school. The result of this confluence of

patchy habitat manipulations of vector populations, with

varying levels of travel by hosts who may be carrying infec-

tion, is a textbook case of potential metapopulation dynamics

for the disease [17–19].

Considering the question of epidemiological control via

vector-targeted intervention as a question of metapopulation

ecology leads us to a natural set of important immediate

questions. How much movement of humans across control

region borders yields a metapopulation dynamic? Do adja-

cent regions need to coordinate with each other in the

timing or method of their vector control strategies to avoid

inadvertently supporting longer durations of ongoing

pathogen transmission among their populations? Can heigh-

tened local surveillance efforts that allow regional decision-

makers to be responsive to disease within their own

population more rapidly compensate for lack of coordination

in vector control across regions that occurs without the need

for any knowledge of population health status? Most criti-

cally, asking these questions also allows us to frame control

issues in the language of biological control. If we understand

the disease metapopulation dynamics, can we decrease the

resources and effort dedicated to local control within each

region, so long as we allow for strategic coordination in

those efforts to achieve a global impact on disease incidence?

To begin to address these questions, we here present a simpli-

fied spatial model of a system that reflects only the most basic

elements of such a system.
2. Model
We developed a spatial model of vector (e.g. Ae. aegypti) and

host (e.g. human) populations arranged as patches on a 10 �
10 grid. We consider a microparasite such as the Zika virus,

such that infection in vectors and hosts can be modelled

using a compartmental approach. Thus, within each patch

(indicated by subscript k), the vector population, Nv,k, consists

of immature (Lv,k), susceptible (Sv,k), exposed (Ev,k) and infec-

tious (Iv,k) mosquitoes. The human population, Nh,k, consists

of susceptible (Sh,k), exposed (Eh,k), infectious (Ih,k) and recov-

ered (Rh,k) individuals. A description of the parameters and

their values is provided in table 1. The parameter values

were based on the literature, varied in order to explore

their impact, or set in order to lead to desired mosquito:host

ratios. Transitions between these compartments are governed

by the following set of equations:

Sh,k(tþ 1) ¼ Sh,k(t)� p1, ð2:1Þ

where p1 � Poisson(
P

j w j,kSh,k(t)lh(j, t)), the number of sus-

ceptible hosts from patch k that become infected at time t
(see below).

Eh,k(tþ 1) ¼ Eh,k(t)þ p1 � p2, ð2:2Þ

where p2 � Poisson(thEh,k(t)) gives the number of latent hosts

that progress to the infective state.

Ih,k(tþ 1) ¼ Ih,k(t)þ p2 � p3, ð2:3Þ

http://rsif.royalsocietypublishing.org/


Table 1. Description of parameters.

parameter description value dim. source

d proportion of exposure experienced away from the home patch 0 – 1 d21 varied

a inverse of gonotrophic cycle duration 0.33 d21 [20]

c probability of a vector becoming infected upon biting an infective host 0.31 — [21]

b probability of a host becoming infected upon receiving an infectious bite 0.35 — [21]

th inverse of human latent period 1/5.8 d21 [22]

g inverse of human infectious period 1/5.8 d21 [22]

m1 adult mosquito death rate 1/13 d21 [23]

tv inverse of extrinsic incubation period 1/9.1 d21 [22]

m2 base immature mosquito death rate 0.05 d21 —

m3 density-dependent modifier of immature mortality 0.001 d21 —

f fecundity 10 d21 [24]

h rate of larval development 1/7 d21 [25]
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Figure 1. (a) An example of the commuting probabilities (F*j,k) for an arbitrary patch (with coordinates 4,7); (b) an example of the different levels of coordination in
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(2) or three steps (3) removed, or collectively by the entire metapopulation (c).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170336

3

 on August 30, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
where p3 � Poisson(gIh,k(t)) gives the number of infectious

hosts that progress to the recovered or immune state.

Rh,k(tþ 1) ¼ Rh,k(t)þ p3: ð2:4Þ

The focus of the model is on the short term, so that

human demography and any possible waning of immunity

can be ignored. Vector populations are described as follows:

Lv,k(tþ 1) ¼ Lv,k(t)� p4 þ p5 � p6: ð2:5Þ

Here, the number of immature mosquitoes dying per

time step is given by p4 � Poisson(m2 þ (m3Lv,k(t))Lv,k(t)).
The number of immature mosquitoes added each step

are given by p5 � Poisson(fNv,k). Juvenile development is

given by p6 � Poisson(h(Lv,k(t) 2 p4)). Changes in the popu-

lation size of susceptible (uninfected) mosquitoes are

given by

Sv,k(tþ 1) ¼ Sv,k(t)þ p6 � (p7 þ p8), ð2:6Þ
where losses are due to mortality: p7 � Poisson(m1Sv,k(t)), and

due to infection: p8 � Poisson(lv(k, t)(Sv,k(t) 2 p7)).

Ev,k(tþ 1) ¼ Ev,k(t)þ p8 � (p9 þ p10): ð2:7Þ

Mosquitoes leave the exposed class by dying: p9 �
Poisson(m1Ev,k(t)), and by becoming infectious following the

extrinsic incubation period: p10 � Poisson(tv(Ev,k(t) 2 p9)).

Iv,k(tþ 1) ¼ Iv,k(t)þ p10 � p11: ð2:8Þ

Infectious mosquitoes remain so until they die: p11 �
Poisson(m1Iv,k(t)).

2.1. Force of infection and movement
The model operates at a scale where mosquito dispersal can

safely be ignored, through the assumption that mosquito

travel between patches is negligible. For dengue and Zika

vectors such as Ae. aegypti this implies that patches capture

communities or neighbourhoods that are separated in space

http://rsif.royalsocietypublishing.org/
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by a few hundred metres or are sufficiently large so that

movement across edges is minimal relative to each patch’s

mosquito population [26–29]. Hosts are assumed to have a

home patch (k), but commute and can potentially be exposed

to infective bites in other patches ( j ) with a probability

of d, which we vary across a wide range. The distribution

of hosts that commute from a given home patch to other

patches in the metapopulation depends on both the dis-

tance to and population size of other patches, following a

gravity-type model:

F j,k ¼
jjj

jkj þ jjj
jkjjjj
d2

j,k
, ð2:9Þ

where jjj and jkj are the respective sizes of the populations

that call patches j and k home, and dj,k represents the Eucli-

dean distance on the grid between these patches. These

probabilities are then normalized over all patches that could

be visited (figure 1a). For each patch, we then have a

matrix W with probabilities of remaining in the home patch

with probability wk,k ¼ 1 2 d, or to any other patch with

probability wj,k ¼ dF*j,k. The distribution of hosts per time

step over patches is based on draws from a multinomial

distribution with these probabilities.

It follows that the forces of infection on hosts (lh) and

vectors (lv) are

lv(j, t) ¼ ac
Îj(t)

N̂j(t)
, ð2:10Þ

where Îj(t) ¼
P

k w j,kIh,k and N̂j(t) ¼
P

k w j,kNh,k. That is to say

that the force of infection on vectors in a given patch depends

on the biting rate (a), the probability of a vector becoming
infected when biting an infective person (c), and the

proportion of hosts present in patch j that are infective.

The force of infection on hosts, lh is given by

lh(j, t) ¼ ab
Iv,j(t)

N̂j(t)
: ð2:11Þ

That is, the force of infection on humans present in patch j
depends on the biting rate (a), the probability of a human

becoming infected following an infective bite (b) and the den-

sity of infective vectors in that patch over all hosts that are

present there that day.

2.2. Control
We focus on the use of larval control. Interventions targeting

immature mosquitoes are commonly employed against

species such as Ae. aegypti that lay eggs in small containers

with water that are often encountered in private yards (e.g.

bird baths, buckets, etc.). Larval control can take the form of

source management, the removal or emptying of containers

or the application of larvicides, such as Bacillus thuringiensis
israelensis [30]. We focus on the latter: a method that increases

the rate of larval mortality in patches where it is deployed. In

our simulations, we introduce a single infected host into an

arbitrarily chosen, but always the same, patch. We assumed

that following detection of at least two infected hosts (so that

the initial introduced case does not invoke a response in the

absence of active transmission) in a given patch, larval control

would be implemented the following day and remain effective

for 10 days. Within a given patch, we assumed that 80% of

immatures would succumb to the larvicide per day, so that

the base death rate in the presence of the larvicide becomes

http://rsif.royalsocietypublishing.org/
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mc ¼2log(0.2) þ m2 (i.e. an arbitrarily chosen high level of effi-

cacy, which allows us to focus on community-level effects of

vector control, rather than local efficacy).

We varied two components of community-level responses

to infection: whether individual patches contribute to surveil-

lance and vector control or not (referred to as cooperation),

and the extent to which patches acted collectively (which we

refer to as coordination). For cooperation, we assumed that a

given, randomly assigned number of patches would not con-

tribute to surveillance and control. This assignment was

fixed, so that the patches that did or did not contribute to con-

trol did not change over time. This percentage was typically

set to 20% of the communities, but a greater proportion of

non-cooperation (50%) was also investigated. Non-cooperation

here could represent, for instance, a lack of resources at a local

level. The extent to which patches acted collectively was varied

from a control response targeted at the individual patch where

infection was witnessed, to a response in the patch with infec-

tion as well as its immediate neighbours, to its neighbours that

are two or three steps removed, or to all patches in the meta-

population (figure 1b). Coordination here therefore gives

insight into the value of extending control activities to increas-

ingly large areas around a focal infection. Thus, we investigate
how the extent to which hosts commute affects the dynamics

of Zika infection as it spreads through a metapopulation as

well as the efficacy of coordinated control responses aimed

at halting the epidemic.
3. Results
The course of the epidemic spreading through the metapopu-

lation is consistent with typical SIR dynamics: a pathogen

burns through a population and then limits its own trans-

mission as immunity is built up. This is illustrated in

figure 2, where the entomological inoculation rate (a relevant

metric of exposure for vector-borne diseases which indicates

the average number of infectious bites received per person

per unit of time) increases sharply before falling. The extent

to which hosts commute was varied by changing d from 0.1

to 1 (i.e. each host has a daily probability of d of commuting

to a different patch, where that host is then exposed to mos-

quito bites). At intermediate levels of commuting, we see the

steepest rise in prevalence and the most intense transmission.

With vector control, the mean prevalence after 400 days

likewise remains higher at intermediate levels of movement

http://rsif.royalsocietypublishing.org/
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(figure 3). We varied the extent to which vector control

responses were coordinated and the extent to which patches

contributed to surveillance and control. Impressions from

figure 3 are that the usefulness of coordination depends

both on the rate of commuting and on the extent to which

patches are capable or willing to implement surveillance

and control.

For instance in figure 3a we see that at both the lowest and

the highest rates of d, there is relatively little gain to be made

by using a more coordinated strategy (although the individ-

ual patch response is still worse than the other strategies),

while at intermediate levels increasing levels of coordination

appear to be more effective. At a lower level of cooperation,

where only half the patches implement surveillance and con-

trol (figure 3b), control is not only less effective in general but

also the relative efficacy of more coordinated responses is

diminished compared to patch-level responses.

To understand why the overall metapopulation disease

dynamics are as they are, patch-level responses are of interest.

In figure 4, three aspects of the epidemic are explored in the

absence of control. The number of introductions of the patho-

gen resulting in active transmission (i.e. distinct chains of

infection in the vector population) appears to not rely much

on the host population size of each patch. The proportion

of time that a patch undergoes active transmission does, how-

ever, depend on the patch’s population size, with more

populous patches having proportionally longer periods of

ongoing transmission, though this effect becomes less pro-

nounced at the highest level of commuting. There appears

to be an inverse relation between patch size and the time

until the first infected vectors appear. It is possible that the
proportion of time with ongoing transmission may be a

result of earlier introduction and therefore a longer trans-

mission window, though we cannot rule out that (in

addition or instead) smaller patches simply exhaust their sus-

ceptible population more rapidly.

We can look at the same statistics when control is being

implemented, to understand how patch-level outcomes are

affected. These are shown for the individual-patch response

in figure 5. When control is implemented at the patch level,

the number of pathogen introductions increases along with

community size. However, this is only evident at low and

moderate levels of movement. A notable difference compared

to the outcomes without control interventions is in the pro-

portion of time patches undergo active transmission, where

the patches divide into those that are and are not effectively

controlled. The patches that are not effectively controlled

tend to be non-cooperating patches, those that did not

implement surveillance or control, and the distinction

between cooperating and non-cooperating patches appears

sharpest under moderate levels of commuting (d ¼ 0.5).

When we plot the time of first introduction against the

proportion of time that patches had ongoing transmission

(i.e. infected vectors), we see that, in the absence of control,

there is indeed a correlation between these two outcomes

(figure 6). With control, this effect disappears. The bimodal

aspect of the patch-level control scenario for the higher

levels of commuting is apparent here as well. Figure 6

suggests that a subset of patches (particularly, but not exclu-

sively, those that did not implement control) can actually be

subjected to a longer period of active transmission than

patches in the absence of any control.
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Looking at the prevalence of infection in hosts adds to this

picture (figure 7). When d is 0.1, prevalence of infection in

hosts in untreated patches is greater than that in treated

patches, but this difference diminishes as commuting intensi-

fies. This is further highlighted by the prevalence by

population size scatter plots. At low levels of movement,

there is a clear separation between treated and untreated
patches, and a correlation between patch size and prevalence.

As expected, at higher levels of movement when hosts are

mixed more thoroughly, the infection status of hosts from

particular patches has seemingly little bearing to their patch

characteristics (treatment or size). When control is performed

collectively, overall prevalence is lower, but otherwise the

conclusions remain largely the same (figure 8).
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4. Discussion
Vector-borne diseases are often highly focal in space and/or

time, and are typically characterized by strong heterogeneity

in exposure among host populations [31,32]. This is no differ-

ent for Aedes-transmitted arboviruses in urban settings

[33–37]. Such heterogeneity can theoretically be masked, alle-

viated, compounded or even shaped by movement of both

vectors and hosts. In the case of mosquitoes, the extent of

movement will be determined by species-specific character-

istics and environmental or ecological conditions. For

humans, socio-economic and cultural conditions probably

shape movement patterns. While it is becoming increasingly

clear that these factors can influence the intensity and

dynamics of vector-borne diseases [6,38–41], understanding

the ramifications for control and surveillance efforts of the

combined effects of movement and heterogeneity remains

at the forefront of vector-borne disease ecology. A metapopu-

lation dynamic, particularly the occurrence of rescue events,

where infection is re-established following local extinctions,

thereby allowing for longer persistence of an epidemic out-

break, would have particular repercussions for how we

structure control programmes [42–44]. This has been recog-

nized in the context of pathogen eradication programmes

(e.g. [45]), yet for the control of arboviruses such as dengue,

chikungunya and Zika, control efforts remain largely

focal and reactive. Adapting control strategies to consider

heterogeneous exposure and human movement may be chal-

lenging, but could be done by incorporating contact tracing,

or targeting high-risk groups or areas [46]. In the case of a

metapopulation dynamic, questions regarding cooperation

among nearby communities become much more relevant.

For instance, to what extent are control efforts hampered by

the inability or unwillingness of adjacent communities to par-

ticipate in a control effort? To what extent does coordination

of control efforts in time affect the usefulness of the interven-

tions? And are there situations where vector control can
inadvertently prolong the period of ongoing transmission in

certain areas?

Our model was run over a relatively short term, namely

that in which an initial epidemic outbreak tended to run its

course and deplete susceptible hosts. Even so, certain aspects

associated with metapopulation dynamics were evident.

These aspects were that we found the highest entomological

inoculation rates and the fastest spread of infection at inter-

mediate levels of host movement. Likewise, when vector

control was implemented, the prevalence of infection

remained higher at these intermediate levels of movement.

This is reminiscent of findings that persistence of directly

transmitted pathogens tends to be maximized at intermediate

levels of connectivity between patches, such that the number

of introductions in uninfected patches relies on both move-

ment and the synchronization of dynamics between patches

[47]. In this study, the peak at intermediate levels of move-

ment may be because the basic reproduction number of

vector-borne disease in metapopulations can decrease with

stronger connectivity [19], while greater rates of movement

can reduce heterogeneity of exposure, and therefore increase

prevalence of infection [41]. Further studies on the dynamics

of immunity in relation to control effect sizes of interventions

are warranted. Additionally, we found that individual

patches in our simulations frequently lost and reacquired

infections, either due to stochastic extinctions (probably

short-lived chains of infection that stuttered and died out

before taking hold) or due to vector control. The number of

active transmission events per patch appeared to be relatively

unaffected by the host population size of individual patches.

In the absence of vector control, the duration of ongoing

active transmission in a given patch, as indicated by the pres-

ence of infective vectors, was associated with the host

population size of that patch (i.e. the number of humans

that called that patch home). Because larger patches would

have attracted a larger proportion of commuters, this is prob-

ably explained by earlier introductions of infections (figure 4).
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Our study has a number of limitations. Certain of these

are due to our assumptions regarding control interventions.

For instance, we have focused only on the use of larval con-

trol, which is a commonly used Aedes spp. abatement

strategy. In reality, once an arboviral outbreak has been ident-

ified, adult control (e.g. perifocal or indoor spraying with

residual insecticides) is likely to be used in addition to

larval control [30]. However, the focus on larval control rep-

resents a targeting of the least mobile stage of the mosquitoes.

Thus, it allows for easy comparison to models applied at a

different scale where adult mosquito movement could

come into play, or to mosquito species which disperse over

greater distances. Models that have investigated the role of

mosquito movement suggest that additional complexities

related to control can emerge. For instance, clustering of cer-

tain interventions can lead to a lower overall efficacy than a

uniformly distributed intervention [48], or increase mosquito

populations in adjacent areas [49]. Another example of a sim-

plifying assumption is that patches in our model either

contributed to both population surveillance of infection in

hosts and vector control or to neither. The rationale behind

this choice was that we assumed such a lack of investment

to be driven largely by socio-economic conditions (e.g. com-

munities which are less likely to implement vector control are

also less likely to invest in active surveillance or have worse

access to healthcare providers). In reality, surveillance and

vector control may be organized at different scales, such

that humans still have access to healthcare and would be

tested for Zika, but vector control might not be implemented

in their community. Alternatively, members of a commu-

nity may be less likely to see physicians for relatively mild

symptoms, but have access to city-wide vector control

interventions. Whether this distinction matters probably

depends on the extent to which communities share information

regarding infected cases and whether a case in a community

which does not implement vector control would trigger a

response in neighbouring communities. A further limitation

relates to the use of a gravity model to describe human
commuting. While use of such an approach is reasonable and

often fits commuting data well, this may not always be the

case (for instance in the case of socially structured movements),

and use of mobile phone data or a radiation model may be

more appropriate [50]. Finally, we note that we assumed that

human behaviour does not change as a function of infection

or throughout an outbreak. In reality, it is likely that a pro-

portion of symptomatic cases would be less mobile, or that

active transmission in an area may lead to avoidance behaviour

or increased use of personal repellents. As including adaptive

human behaviour in epidemic models can have large impli-

cations [51], such refinements should be explored in models

adapted and parametrized to explore such questions in specific

situations and well-defined spatial scales.

The importance of (re-)introductions of infection and host

movement suggest an important role for coordination of control

activities and cooperation among communities. We have inves-

tigated these two aspects here in the following sense: that

coordination implies that surrounding communities would

implement vector control at the same time as the focal commu-

nity where an infection in humans was detected, in order to

more effectively limit spread of the pathogen. Cooperation

was investigated in the sense of the ability or willingness to

pay for control activities among different communities, with

potential repercussions of non-cooperation being either that

such communities could act as sources of (re-)infection or

simply diminish the community-level effects (as opposed to

the direct, local effects) of control. Our main result is that

the efficacy of coordination depends strongly both on how

frequently humans commute, and on the overall level of

cooperation among communities. Importantly, we found that

while more coordinated responses tend to lead to significantly

lower prevalence levels after the 400-day period we simulated,

this is not the case at low levels (less than or equal to 50%) of

cooperation. In that case, a focal, individual-patch response is

not much less effective than a collective response targeting

the entire metapopulation, and both lead to high proportions

of hosts becoming infected over this time period.
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Worrisome also is the finding that at higher levels of

commuting, implementing vector control at the individual-

patch level only leads to a bimodal pattern with regard to

the proportion of time that patches experience active trans-

mission (figure 5). In fact, these patches often may have

active transmission for a longer period than they would be

in the absence of control altogether (figure 6). Intuitively,

this could be because of an influx of susceptible hosts from

nearby patches that do implement control, resulting in a

decreased likelihood of transmission dying out in these

source patches.

When commuting occurs with high frequency, patches

that do not participate in surveillance and treatment can

putatively keep transmission going for a longer time, but

do not necessarily suffer a higher disease burden themselves,

as the location of exposure becomes less associated with the

control activities undertaken in the home patch. Thus, the

time a patch continues to have active transmission differs

from the effects on host prevalence. Under high levels of

movement, there is potentially a tension between achiev-

ing high levels of coordination (e.g. multiple communities

enacting vector control to limit the spread of Zika) and main-

taining a high level of cooperation (i.e. the proportion of
communities that is willing to participate in vector control

and surveillance activities). This is because at high levels of

coordination, the community-level impact of vector control

will be stronger, potentially providing an incentive to not

participate to individual communities. This suggests that con-

trol of vector-borne diseases such as Zika could, under certain

conditions, lead to a situation reminiscent of a tragedy of

the commons. Improving vector control operations may

thus have to rely not only on a realistic understanding of

vector populations, human movement and factors leading

to heterogeneous risk of exposure, but also on the social

determinants that drive demand (e.g. [52]) for vector control

in specific communities.
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Lounibos LP, Lourenço-de Oliveira R. 2003 Dispersal
of Aedes aegypti and Aedes albopictus (Diptera:
Culicidae) in an urban endemic dengue area in the
State of Rio de Janeiro, Brazil. Memórias do Instituto
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