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Abstract

Not all exotic species establish and expand aggressively (i.e. become invasive). As

potential vectors of disease agents, invasive mosquitoes can have considerable impact

on public health, livestock and wildlife; therefore, understanding the species character-

istics and ecological circumstances promoting their invasiveness is important. The

mosquito Aedes japonicus japonicus, originally from north-east Asia, was introduced at

least two separate times to the north-eastern USA, as surmised from the initial exis-

tence of two populations with distinct nuclear and mitochondrial genetic signatures

that later intermixed. Since these original introductions in the late 1990s, Ae. j. japoni-
cus has expanded across 31 US states, two Canadian provinces and five European coun-

tries. Although some of the expanded range was due to other independent

introductions, to understand what drove the postintroduction expansion of

Ae. j. japonicus within the north-eastern USA, we performed a high-resolution land-

scape genetic analysis of 461 specimens collected across Virginia, a state south of the

original introductions. All specimens were genotyped at seven pre-optimized

microsatellite loci, and a subsample was sequenced at one mitochondrial locus. We

concluded that throughout Virginia this species has primarily expanded in association

with humans: genetic distance and distance along roads remained correlated after con-

trolling for geographic distance, and proximity to I-95, a major interstate highway,

strongly predicted nuclear ancestry. In contrast, there was very limited evidence of dif-

fusion even at distances potentially suitable for autonomous mosquito flight. This

implies that its association with humans (rather than innate species characteristics) is

the single most important determinant of invasiveness in this mosquito.
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Introduction

Most species that are transported to a new geographic

area by humans either fail to establish or establish but

remain localized with minimal impact. By definition, to

progress to the level of a biological invasion the geo-

graphic distribution of the exotic species must increase

significantly within its new range (Richardson et al.

2010). Accordingly, while a few dozen mosquito species

have established in areas outside their native ranges,

only a handful have dramatically increased in range

and abundance to become worldwide invaders with

human health consequences (Juliano & Lounibos 2005).

As the impact of these few species has been dispropor-

tionately large (Lounibos 2002), it is critical to under-

stand the dispersal patterns and environmental factors
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leading to their extensive secondary (i.e. postestablish-

ment) expansion. While much effort has been devoted

to studying the contributions of phenotypic traits to

invasion success, for example growth rate and competi-

tive ability (Sakai et al. 2001), and also genetic factors,

such as genetic variation and admixture (Dlugosch &

Parker 2008), landscape genetics is a relatively recent

approach uniting landscape factors with genetics to

glean new insights (Lawson Handley et al. 2011). The

study of landscape genetics considers the influence of

landscape features (such as roads, rivers and moun-

tains) on gene flow and other evolutionary processes

(Manel & Holderegger 2013) and applied to species

invasions, it aids in the reconstruction of invasion path-

ways, although studies often suffer from a lack of spa-

tial and temporal resolution.

An excellent model system for understanding inva-

sive species spread is the mosquito Aedes japonicus

japonicus Theobald (Diptera: Culicidae), the most recent

mosquito to become globally invasive and one for

which extensive genetic tracking of its expansion is

available. Ae. j. japonicus is a temperate species, native

to northern Japan and the Korean peninsula (Tanaka

et al. 1979). High-resolution spatial and temporal

genetic analyses of early postestablishment populations

have shed light on its recent expansion into North

America and Europe (Fonseca et al. 2010; Zielke et al.

2014). In North America, it was first collected in Con-

necticut in 1997 (Andreadis et al. 2001) and established

populations were detected in New York and New Jer-

sey in 1998 (Peyton et al. 1999) and in Pennsylvania in

1999 (Fonseca et al. 2001). The species has subsequently

spread to 31 US states, primarily in the north-east, and

two Canadian provinces, as well as five countries in

central Europe (Kaufman & Fonseca 2014). Until

recently, the expansion of this mammalian biter known

to target humans (Molaei et al. 2009) was primarily a

nuisance concern; however, it has now become impli-

cated as a potentially important vector of LaCrosse

virus to humans (Harris et al. 2015; Westby et al. 2015).

It is also extraordinarily competent for Japanese

encephalitis and Rift Valley fever viruses, two emerging

diseases worldwide (Takashima & Rosen 1989; Turell

et al. 2013; Huber et al. 2014a).

Fonseca et al. (2001, 2010) demonstrated the existence

of two distinct introductions of Ae. j. japonicus into the

eastern USA, defined by nonoverlapping mitochondrial

haplotypes and distinctive microsatellite allele frequen-

cies: (i) the ‘PA type’ (central Pennsylvania) and (ii) the

‘NY type’ (New York, New Jersey and Connecticut).

Detailed spatial and temporal analyses of specimens

collected in later years (2002–2005) across Pennsylvania

revealed reciprocal genetic exchange between the two

introductions, weakening the strong association

between mtDNA haplotype and nuclear signature (Fon-

seca et al. 2010).

Several landscape factors have been linked with the

spatial spread of Ae. j. japonicus and other mosquito spe-

cies, especially those in the genus Aedes (sensu Wilkerson

et al. 2015). Aedes eggs are relatively desiccation-resistant

and have delayed hatching, which means large numbers

may be accidentally transported by humans when

females oviposit in transient water found in lawn orna-

ments, plant pots, construction supplies and used tires

(Kaufman & Fonseca 2014). In a similar invasive species,

Aedes albopictus, multiple lines of evidence point towards

interstate highway networks as a major expansion path-

way in the USA (Moore & Mitchell 1997; Medley et al.

2014) primarily via the transport of eggs in used tires

(Hawley et al. 1987). There is also evidence that adult

mosquitoes can be inadvertently transported, for exam-

ple in airplanes (Bataille et al. 2009), although this is con-

sidered a less likely means of establishment due to the

small number of individuals involved (e.g. lower

propagule pressure) (Lounibos 2002; Scholte et al. 2010).

In addition to the above mechanisms of anthropogenic

dispersal, it has been also proposed that Ae. j. japonicus

adults may autonomously disperse along stream corri-

dors, as this species often deposits eggs in rock pools

along streams when available (Bevins 2007). Another

landscape factor with the potential to influence

Ae. j. japonicus expansion is temperature: this species is

primarily distributed throughout cooler latitudes in both

its native (Asian) and invasive (North American and

European) ranges (Kaufman & Fonseca 2014). Accord-

ingly, we have observed poor survivorship of

Ae. j. japonicus larvae at warm temperatures in labora-

tory experiments (Egizi et al. 2014) and demonstrated a

strong influence of elevation (and its proxy, temperature)

on genetic patterns in Hawaii (Egizi & Fonseca 2014).

Our goal was to follow up on the genetic analyses

performed shortly after the introduction of Ae. j. japoni-

cus into the eastern USA using high-resolution spatial

genetics. Given the extensive mixing between the two

genetic strains already apparent in 2002–2005 across

Pennsylvania (Fonseca et al. 2010), we expected that

individuals of mixed heritage would have dispersed

south and proliferated, obscuring the signal of these

two introductions in the years since. To test this

hypothesis, we evaluated spatial genetic patterns of

Ae. j. japonicus in 2011 across the US state of Virginia, a

state both south of the initial introduction (e.g. well into

the area of secondary expansion) and offering compara-

ble size and scope to the high-resolution analyses con-

ducted previously (Fonseca et al. 2010). Furthermore,

we examined the correlation between genetic signatures

(nuclear and mitochondrial) and landscape features

such as stream corridors, highways, elevation, climate
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and location of preferred larval habitat (e.g. used tires)

in an effort to understand the dispersal pathways of

this mosquito species.

Methods

Sample collection and extraction

Specimens of Ae. j. japonicus were collected in June–
August 2011 during a surveillance campaign that tar-

geted 89 independent cities and counties in Virginia

with no prior collection record of this species (J. Kiser

and C. Abadam, unpublished data). Larvae were col-

lected from artificial containers (one container per site)

using 30-mL plastic pipettes or larval dippers (Clarke

Dipper, Clarke, Roselle, IL), then placed on ice until

they were identified to species following Farajollahi &

Price (2013). A total of 1564 Ae. j. japonicus larvae were

identified from collections at 118 of 163 sites, compris-

ing 79 of the 89 jurisdictions sampled. There were 10

counties in Virginia where no Ae. j. japonicus larvae

were detected despite considerable sampling effort, all

of them at low elevations along the coast (J. Kiser and

C. Abadam, unpublished data).

Between 1 and 9 specimens from each collection site

were preserved in a 2-mL screw-capped vial with 95%

ethyl alcohol. When possible, different larval instars

were selected from a site to decrease as much as

possible the likelihood of oversampling siblings. Before

DNA extraction, specimens were removed from the

vials and placed on a clean paper towel allowing a few

moments for any residual ethanol to evaporate, then

processed in Qiagen DNeasy blood and tissue 96-well

plate kits (Qiagen, Valencia, CA). A total of 461 speci-

mens from 100 different collection sites, comprising 74

independent jurisdictions, were used for genetic analy-

sis (Fig. 1A, and Table S1, Supporting information).

Microsatellite genotyping

Specimens were genotyped at seven microsatellite loci

(Widdel et al. 2005) using the modified primer OJ5R3

(instead of OJ5R) to reduce null alleles, following the

protocols in Fonseca et al. (2010). Microsatellite PCR

products were sized on an ABI 3130XL Genetic Ana-

lyser 16 Capillary machine (Applied Biosystems, Foster

City, CA). Alleles were scored in GENE MAPPER 3.5

(Applied Biosystems) using bins optimized on world-

wide populations of this species (Huber et al. 2014b).

Mitochondrial sequencing

While microsatellites are both highly variable and cost-

effective DNA markers, unfortunately there are cur-

rently only seven microsatellite loci optimized for

Ae. j. japonicus that show dependable Mendelian

Fig. 1 (A) Plot of all collection sites

(white diamonds) of Ae. j. japonicus in

Virginia for specimens used in genetic

analysis. Base map is SRTM30_Plus (glo-

bal bathymetry and elevation data at 30

arc seconds, Becker et al. 2009) down-

loaded with hillshading using DEM

Explorer (Han et al. 2012). (B) Plot of

population group mid-points by eleva-

tion. Each group is composed of samples

from neighbouring counties that add up

to equal a sample size of at least 16 (see

Table 1 for groupings). Elevation cate-

gories are as follows: black = high

(500+m), grey = mid (200–500 m),

white = low (<200 m). Light grey lines

denote the state’s larger roads and high-

ways, and the path of Interstate-95 is

highlighted with a dotted black line.
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inheritance (Widdel et al. 2005). Thus, we also

sequenced a mitochondrial locus, allowing a more com-

prehensive picture of genetic patterns due to the differ-

ing mutation rates and modes of inheritance of nuclear

and mitochondrial DNA (Sunnucks 2000). To maximize

information per individual while minimizing cost, all

specimens were genotyped at the seven microsatellite

loci, but only a subset of 96 were sequenced at the

mtDNA locus (Table S2, Supporting information).

To subsample specimens for mitochondrial sequenc-

ing, we used a random number generator to select 32

specimens from each of three elevation categories

(Low = below 200 m, Mid = 200–500 m, High = above

500 m). Equal representation across elevations was cho-

sen as we have previously identified elevation as a

major influence on genetic diversity in this species

(Egizi & Fonseca 2014). The randomly selected speci-

mens were distributed throughout the sampled areas of

Virginia (compare Fig. 1A to Fig. S1, Supporting infor-

mation). From each of the 96 specimens, we sequenced

a portion of the sodium dehydrogenase subunit 4

(ND4) locus, known to be variable in this mosquito spe-

cies (Fonseca et al. 2010) using the same protocol as in

Egizi & Fonseca (2014); Zielke et al. (2014). PCR prod-

ucts were cleaned with ExoSap-IT (Affymetrix, Santa

Clara, CA), cycle sequenced and then sequenced on an

ABI 3730XL Genetic Analyser 96 capillary machine

(Applied Biosystems, Foster City, CA). The sequences

were assembled and cleaned in SEQUENCHER 4.10.1 (Gene-

Codes Co., Ann Arbor, MI).

Assignment of samples to population groups

Because most collection sites contained only a handful

of larvae (mean � SD = 4.8 � 2.0), we grouped nearby

sites together to form ‘population groups’ of at least 16

specimens for analysis. Several collection sites that had

a small number of specimens and were not in close

proximity to other sites were included in individual-

based analyses but excluded from the subset of analyses

relying on population groups (namely Craig, Patrick,

Powhatan, and Page counties and the cities of Manassas

Park and Falls Church) (Table S1, Supporting informa-

tion). Using this method, a total of 23 population

groups were identified comprising 447 specimens,

which were used in subsequent analyses (Table 1).

While grouping together sites with different genetic sig-

natures removes their individual signal, it also creates

increased within-population variability, obscuring dif-

ferences between groups and reducing our chance of

finding population structure where it does not exist

(type I statistical error). However, because this grouping

strategy could make it difficult to detect very localized

patterns of dispersal (e.g. <30 km), we also performed

analyses on individual genotypes without combining

specimens into groups.

We defined the latitude and longitude coordinates of

each population group as the mid-point of the GPS

coordinates of all sample sites within the group, calcu-

lated using the Geographic Midpoint Calculator

(http://www.geomidpoint.com/). Sites within the same

population group were on average 35.2 km apart, and

the largest distance between any two sites within the

same group was 80 km. The average distance between

population group mid-points was 195.6 � 47.8 km

(mean � SD). The two closest groups were H4 and H5

(24.8 km), and the two furthest were L1 and M9

(549.4 km). The elevation of each population group was

calculated as the average elevation of all sample sites

within the group. Differences in elevation between the

lowest and highest elevation sites (min–max) within

each group are given in Table 1. Population groups

were named by elevation category: locations collected

between 0 and 200 m above sea level (L = low eleva-

tion), those collected between 200–500 m (M = mid-ele-

vation), and those collected above 500 m (H = high

elevation) (Fig. 1B, Table 1).

Calculation of landscape variables

Air temperature information for each population group

was obtained from the NOAA National Climatic Data

Center Mapping Tool (http://gis.ncdc.noaa.gov/map/

viewer/) using the nearest weather station to the group

mid-point. Temperature variables noted were mean

annual precipitation and mean annual temperature (in

°C). A list of potential used tire vendors in Virginia

and their latitude and longitude coordinates were

obtained from a Places search in GOOGLE EARTH Version

7.1 (Google Inc., Mountain View, CA) with the terms

‘used tires in Virginia’. Each potential vendor was

researched via the Internet to confirm they sold used

tires. Vendors who could not be confirmed were

excluded. A total of 133 used tire vendors were identi-

fied, and the distance from each population group to

the closest tire vendor was calculated using the Near

tool in the Analysis Toolbox in ARCMAP Version 10.2

(ESRI, Redlands, CA). The distance from the centre of

each population group to the nearest major highway

(class 1 or class 2 roads only), as well as to Interstate

95 specifically, was also calculated using the Near tool

in ARCMAP Version 10.2 (ESRI). Interstate 95 (I-95) is a

major multilane highway stretching 1917 miles along

the US east coast from Maine to Florida. According to

the I-95 Corridor Coalition (2015), it is heavily traf-

ficked with an average of 72 000 vehicles per day mak-

ing up over a third (35%) of the nation’s vehicle miles

travelled (VMT).
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Ancestry of Virginia specimens

To determine the ancestry of Virginia Ae. j. japonicus

specimens (whether they have a NY or PA nuclear sig-

nature, or a mixture of both), we performed a STRUCTURE

analysis (Pritchard et al. 2000), including reference spec-

imens from the original collections in 1999 (New York

and New Jersey) and 2000 (Pennsylvania) (N = 25 of

each), along with all 461 genotyped Virginia specimens.

STRUCTURE uses a Bayesian approach to assign multilocus

genotypes into one or more ancestral clusters (Pritchard

et al. 2000), and its calculations are independent of any

a priori grouping. The model with admixture was run

with a burn-in period of 10 000 followed by 10 000

reps. We determined the most likely number of clusters

using STRUCTURE HARVESTER (Earl & vonHoldt 2012) to

Table 1 Population groupings of at least 16 individuals, following Fig. 1B

Group Counties included N Latitude Longitude Elevation Elev range I HO uHe Anc. Hwy Avg. T

L1 Essex, Gloucester,

Lancaster, Mathews,

Middlesex

16 37.56871 �76.53217 20.79 3.4–26.8 1.100 0.539 0.570 0.733 6.32 58.0

L2 Isle of Wight,

Southampton, Sussex

16 36.904929 �76.87305 26.92 11.3–36.6 0.948 0.518 0.542 0.797 1.00 58.4

L3 Amelia, City of

Hopewell, Louisa

25 37.523738 �77.68407 80.67 12.5–123.8 0.984 0.533 0.528 0.675 1.58 56.5

L4 Brunswick, Lunenburg,

Mecklenburg

20 36.814244 �77.97274 118.67 92.4–142.0 0.941 0.479 0.490 0.777 0.06 58.1

L5 Cumberland, Fluvanna 17 37.691306 �78.24706 130.53 99.4–149.1 0.960 0.546 0.527 0.730 5.28 58.0

L6 Charlotte, Dinwiddie,

Nottoway

16 37.105488 �78.04771 144.58 101.2–203.9 1.038 0.536 0.562 0.666 1.54 56.7

M1 City of Winchester,

Clarke, Frederick,

Rappahannock, Warren

24 39.022386 �78.13708 202.48 169.5–235.3 1.002 0.536 0.539 0.720 1.80 54.6

M2 City of Danville, Halifax,

Pittsylvania

17 36.64191 �79.32815 202.59 136.5–267.0 1.175 0.617 0.623 0.549 3.25 58.5

M3 Amherst, Buckingham,

City of Buena Vista

20 37.617623 �78.96479 209.86 151.2–247.8 0.981 0.511 0.532 0.809 2.96 56.4

M4 Appomattox, Campbell 16 37.385002 �78.87407 228.45 212.8–244.1 1.094 0.554 0.607 0.538 2.86 56.0

M5 City of Martinsville,

Henry

23 36.736302 �79.87902 256.41 214.9–243.8 1.108 0.542 0.587 0.600 5.16 55.5

M6 City of Bedford, City of

Lynchburg, City of

Salem, Bedford Co

20 37.337952 �79.54375 276.91 211.8–341.7 1.112 0.617 0.604 0.337 0.18 56.1

M7 City of Harrisonburg,

Greene, Orange,

Rockingham

20 38.313187 �78.58897 301.18 151.5–446.5 0.936 0.545 0.515 0.800 5.80 55.6

M8 Alleghany, City of

Lexington, Rockbridge

16 37.786407 �79.61116 329.99 295.7–388.6 1.221 0.648 0.649 0.317 6.04 54.9

M9 Dickenson, Lee, Scott 20 36.832948 �82.65212 454.97 403.3–497.7 1.058 0.621 0.596 0.286 8.53 55.1

M10 Augusta, Highland,

Staunton, Waynesboro

23 38.206013 �79.11453 481.66 406.6–629.1 1.085 0.559 0.582 0.650 0.50 53.6

M11 Bath, City of Covington 18 37.859177 �79.93192 483.79 385.6–708.4 1.257 0.667 0.651 0.274 1.42 54.6

H1 Giles, Pulaski 19 37.226357 �80.53314 572.49 563.9–585.2 1.046 0.608 0.589 0.428 7.62 51.6

H2 City of Bristol, Smyth,

Washington

20 36.746573 �81.7987 612.24 541.3–713.5 1.115 0.612 0.594 0.299 1.93 53.5

H3 Buchanan, Russell,

Tazewell

21 37.074195 �81.94018 642.01 452.9–880.9 1.110 0.571 0.597 0.423 7.31 52.4

H4 Carroll, City of Galax 19 36.691337 �80.93403 744.86 686.1–776.6 1.080 0.635 0.596 0.292 2.63 51.8

H5 Bland, Grayson, Wythe 25 36.844113 �81.13685 763.78 692.2–788.2 1.140 0.595 0.599 0.358 3.13 51.1

H6 Floyd 16 36.85804 �80.48116 837.29 836.4–838.2 1.122 0.643 0.604 0.396 0.03 51.5

N = sample size; I = Shannon’s information index; Ho = observed heterozygosity; uHe = unbiased expected heterozygosity;

Anc. = average proportion PA ancestry (NY = 1 – PA); Hwy = distance (km) from nearest major (class 1 or 2) highway; Avg.

T = mean annual temperature. Elevation is averaged across sample sites within a group; Elev range = min–max site elevations within

a group (in meters). Ho and uHe are averaged over 7 nuclear loci.
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implement the method of Evanno et al. (2005). STRUCTURE

also gives scores for each individual (Q scores) that esti-

mate the proportion of its ancestry originating from

each cluster (Pritchard et al. 2000). In our analysis, these

Q scores signify the proportion of each individual’s

nuclear ancestry derived from the NY type (‘NY ances-

try’) and the proportion similar to the PA type (‘PA

ancestry’) (most likely K = 2). We calculated the average

proportion NY and PA ancestry for each collection site

and population group by averaging Q scores across

individuals.

To examine in detail the contributions of landscape

variables to patterns in proportion ancestry (NY vs.

PA), a beta-regression was conducted using the BETAREG

package in R (Cribari-Neto & Zeileis 2010). This

approach fits a nonlinear model using the beta-distribu-

tion and a logit link and is suitable when the response

variable is (0,1) bounded as is the case with proportions

(Ferrari & Cribari-Neto 2004). Model selection was eval-

uated using the function dredge() in package MUMIN

(Barton 2015) to evaluate all possible models and rank

them by AICc. AICc is a second-order derivation of

AIC (Akaike’s information criterion, which estimates

the relative distance between true and approximating

models) and is preferred for small sample sizes (Burn-

ham & Anderson 2002). For each of the top ten models

ranked by AICc in dredge(), the BIC (Bayes information

criterion) was also calculated. In contrast to AIC and

AICc, the BIC roughly corresponds to the posterior

probability of a candidate model and is not a distance

estimate (Burnham & Anderson 2002). To compare the

top ten models, Di was calculated as the difference

between each model’s AICc and the lowest AICc value

(Di = AICci – AICmin). Models with Di <2 were consid-

ered to have substantial support (Burnham & Anderson

2002). Diagnostic plots were used to evaluate the fit of

the most highly ranked models (Cribari-Neto & Zeileis

2010).

Each of the two original introductions identified by

Fonseca et al. (2010) had a characteristic nuclear

microsatellite genotype and associated set of ND4 hap-

lotypes (‘mitotypes’) (Fonseca et al. 2010). In Virginia,

we examined the correspondence between ND4 haplo-

type and nuclear cluster assignment (NY vs. PA) using

both an analysis of molecular variance (AMOVA) and chi-

square test. Each of the 96 ND4-haplotyped individuals

was sorted by nuclear ancestry (based on which cluster

contributed >50% of their ancestry). Then, an AMOVA

was run using GENALEX 6.501 (Peakall & Smouse 2006)

to determine whether mitotype frequencies differed

between the NY and PA nuclear groups. For the chi-

square test, we used those same nuclear groups and

defined mitochondrial groups based on the NY vs. PA-

associated mitotypes reported in Fonseca et al. (2010)

(H1 = NY, H9/H12 = PA), then tested whether individ-

uals are more likely to have matching nuclear and mito-

chondrial designations or more likely to have mixes.

Effects of landscape features on genetic structure

To examine measures of genetic diversity in relation to

landscape factors using the population groupings, alle-

lic richness (AR) was calculated in FSTAT 1.2 and stan-

dardized to the smallest population size (N = 16) using

rarefaction (Goudet 1995) for each group. Shannon’s

information index (I) and observed and unbiased

expected heterozygosity were calculated in GENALEX

6.501 (Peakall & Smouse 2012). We tested for significant

values of Spearman rank order correlations between

genetic variables (allelic richness, Shannon’s I, observed

heterozygosity and unbiased expected heterozygosity)

and landscape variables (latitude, longitude, elevation,

annual precipitation, average annual temperature, dis-

tance from used tire vendors, distance from I-95 and

distance from any nearest highway using the rcorr()

command in the HMISC package in R (R Core Team

2013). Spearman’s rho, a nonparametric method, was

chosen due to several of the genetic variables failing to

meet criteria of normality despite transformation. A

multiple test correction was performed using the p.ad-

just() command with option ‘BH’ to control the false-

discovery rate as in Benjamini & Hochberg (1995) and

adjusted P values are reported in the results.

To examine the relationship between pairwise

genetic distance (nuclear distance, calculated from the

microsatellite data) and multiple landscape features,

we created several distance matrices: an elevation dis-

tance matrix was calculated by subtracting the differ-

ence in elevation between pairs of population groups.

A geographic distance matrix was calculated in GE-

NALEX 6.501 (Peakall & Smouse 2006). Matrices of dis-

tance along roads and distance along streams were

calculated using the Network Analyst toolbox in AR-

CMAP Version 10.2 (ESRI, Redlands, California). This

tool maps each input point (e.g. GPS coordinates) to

the nearest place on the network (whether roads or

streams) and then calculates the distance between. In

this analysis, input points were group mid-points. For

the analysis of distance along streams, all pairs of pop-

ulations that were not in the same watershed (i.e. not

connected by streams) had to be excluded, leaving

only 75 of 529 possible pairs. The genetic distance

matrix used in these analyses was made from pairwise

FST values calculated in FSTAT 1.2 (Goudet 1995)

(Table S3, Supporting information).

The genetic distance matrix (pairwise FST values) was

tested against the landscape distance matrices (straight

geographic, elevation, roads and streams) in Mantel

© 2016 John Wiley & Sons Ltd
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tests in FSTAT 1.2 (Goudet 1995). Each distance matrix

was first tested individually and then in a partial Man-

tel to control for straight geographic distance. As Man-

tel tests can perform poorly in situations with high

spatial autocorrelation (Guillot & Rousset 2013), we also

performed a multiple regression on distance matrices

(MRDM) which has been proven reliable in several

landscape genetics scenarios (e.g. Balkenhol et al. 2009;

Prunier et al. 2015). Further, we calculated commonality

coefficients for each MRDM model, a variance partition-

ing procedure that disentangles the individual vs.

shared contribution of each predictor variable to R2,

useful when the predictors are themselves correlated

(Ray-Mukherjee et al. 2014) as is the case when compar-

ing spatial distance matrices. This was performed using

the R packages ECODIST (Goslee & Urban 2007) and YHAT

(Nimon et al. 2013) following the CAonDM script pro-

vided by Prunier et al. (2015) in Dryad.

Spatial autocorrelation tests were performed in GE-

NALEX 6.501 (Peakall & Smouse 2012) using the multilo-

cus approach developed by Smouse & Peakall (1999). In

this method, an autocorrelation coefficient r is calcu-

lated using the genetic covariance between pairs of

individuals within each geographic distance class. Then,

the significance of r is tested both by bootstrapping

(which generates a confidence interval) and a nonpara-

metric permutation technique (which generates a P

value) (Smouse & Peakall 1999). This method therefore

allows an examination of the spatial extent over which

individuals tend to be genetically similar, independent

of population groupings. Because the pairwise covari-

ance used to calculate r measures the extent to which

two individuals vary in the same direction from a

genetic centroid (Smouse & Peakall 1999), this analysis

was performed separately for the two genetic clusters

identified by STRUCTURE (roughly corresponding to the

western vs. eastern parts of the state, e.g. see Fig. 2)

using distance classes of 5 km.

The program GENETICSTUDIO (Dyer 2009) was used to

create a Population Graph, a visual way of displaying

genetic structure using a graph theory approach. The

nodes of the graph represent populations, whose sizes

are proportional to within-population variation, while

the edges connect pairs of populations and represent

significant covariance between them (reflecting gene

flow) (Dyer & Nason 2004). The sum of all edge lengths

equals the among-population variation component of

genetic variance calculated in an AMOVA (r2
A), and

therefore, Population Graphs can be considered an

extension of an AMOVA test that visualizes how the vari-

ation is apportioned rather than just testing whether it

exists (Dyer & Nason 2004). We also used the Graph

component of GENETICSTUDIO to identify compressed and

extended edges in the Population Graph with a chi-

square test. Compressed edges are genetically more dif-

ferent than expected, given their geographical distance,

suggesting a barrier to gene flow between those two

nodes. Extended edges are more similar than expected

given their distance, suggesting possible long-distance

dispersal (Garrick et al. 2009).

Fig. 2 (A) STRUCTURE graph displaying

proportion nuclear ancestry of PA type

(Yellow) and NY type (Blue) in a repre-

sentative sample of the original New

York and Pennsylvania introductions

(collected in 1999 and 2000) and across

modern day Virginia (collected in 2011).

Virginia specimens are ordered by longi-

tude. (B) Plot of Ae. j. japonicus collection

sites in Virginia shaded by average pro-

portion PA nuclear ancestry (calculated

from STRUCTURE Q-scores) within each col-

lection site. NY ancestry = 1- PA ances-

try. Locations correspond to Fig. 1A.

© 2016 John Wiley & Sons Ltd
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Results

Ancestry of Virginia specimens

Unexpectedly given the prevalence of mixed genotypes

already present further north (in New York, New Jersey

and Pennsylvania) during 2002–2005 (Fonseca et al.

2010), there was still a strong gradient in NY vs. PA

ancestry across Virginia in 2011. The eastern part of the

state had a greater proportion PA ancestry while the

western part had greater NY ancestry (Fig. 2, also see

Fig. S2, Supporting information). Despite a strong corre-

lation with multiple landscape variables, including lon-

gitude, temperature, elevation and distance from I-95

(Table S4, Supporting information) in the regression

analysis containing all predictors (with PA ancestry as

the response), only distance from I-95 was significant

and had the largest estimate for beta (Table 2). The top

two models ranked by AICc (with Di <2, see Table S5,

Supporting information) were Model 1 (distance from I-

95+ highway distance) and Model 2 (distance from I-95

alone) (Table 2). Interestingly, while Models 1 and 2

had nearly identical AICc and BIC rankings, indicating

similar fit, examination of residuals plots for Model 2

revealed the presence of a lurking variable unaccounted

for in the model. This trend was not present in the

residuals plots for Model 1, suggesting that the missing

variable was highway distance and that Model 1 was

the best fit overall.

Similarly, PA mitotypes (H9 & H12) just like PA

genotypes were more common in the eastern part of the

state, and the NY mitotype (H1) in the west (Fig. 3).

Overall, mitochondrial–nuclear associations from the

original two introductions (Fonseca et al. 2010) were

broadly maintained (Fig. 4). A chi-square testing this

association (e.g. that a specimen with NY nuclear geno-

type was equally likely to have either a NY or PA mito-

type) was significant both when genotypes were

defined as >50% ancestry (X2 = 8.97, P < 0.01) and

when genotypes were defined more stringently, as

>75% ancestry (X2 = 6.59, P < 0.05). This result was

echoed in an AMOVA test, where specimens with a NY

genotype had significantly different mitotype frequen-

cies than specimens with a PA genotype (ΦPT = 0.07;

P = 0.007). Interestingly, introgression of the PA mito-

type into NY genotypes was greater than the reverse,

an asymmetry that may have been driven by a number

of specimens in the western part of the state with NY

nuclear ancestry but an H9 mitotype (Figs 3 and 4).

Effect of landscape features on genetic structure

Shannon’s I, a measure of within site group genetic

diversity, was positively correlated with elevation

(r = 0.54, P = 0.0209) and distance from I-95 (r = 0.62,

P = 0.0060) and negatively correlated with longitude

(r = �0.57, P = 0.0132). Although not significant, there

was also a negative relationship between Shannon’s I

Table 2 Beta-regression results for the model with all possible explanatory variables (Full Model) as well as the top two models

(Models 1 and 2) ranked highest by model selection criteria (see text). Response variable is proportion PA ancestry, calculated from

STRUCTURE Q-scores. Pseudo R2 = squared correlation between linear predictors and the link-transformed response (Ferrari & Cribari-

Neto 2004)

Pseudo R2 AICc BIC Predictor Estimate SE Z value Pr(>|z|)

Full model 0.7399 �6.394 �13.37 (Intercept) 0.18208 0.08658 2.103 0.0355

Lat 0.05319 0.12256 0.434 0.6643

Long 0.09916 0.39111 0.254 0.7999

TireDist 0.02055 0.10601 0.194 0.8463

DistHwy 0.21103 0.13176 1.602 0.1092

Dist95 �0.95565 0.41889 �2.281 0.0225

Elev 0.03784 0.39631 0.095 0.9239

AvgT �0.11806 0.30339 �0.389 0.6972

AnnPrec 0.17737 0.12663 1.401 0.1613

Model 1 0.7176 �32.509 �30.19 (Intercept) 0.17824 0.09001 1.98 0.0477

Dist95 �0.75825 0.10454 �7.253 4.08E-13

DistHwy 0.19737 0.1013 1.948 0.0514

Model 2 0.6689 �31.929 �29.79 (Intercept) 0.16979 0.09635 1.762 0.078

Dist95 �0.68122 0.10341 �6.587 4.48E-11

AICc = corrected Akaike’s information criterion. BIC = Bayes information criterion. Predictor abbreviations: Lat = latitude;

Long = longitude; TireDist = distance to the nearest used tire vendor; DistHwy = distance to the nearest class 1 or 2 highway;

Dist95 = distance from Interstate 95; Elev = elevation; AvgT = average annual temperature; AnnPrec =average annual precipitation.

Estimates are maximum-likelihood estimates of standardized beta-coefficients. Z and P values are for a Wald’s test to determine

whether the estimate of beta is significantly different from zero. Significant P values are bolded.
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and average temperature (r = �0.42, P = 0.1014).

Observed heterozygosity showed a similar pattern, pos-

itive correlation with elevation and distance from I-95

but negative correlation with longitude and tempera-

ture (Table S4, Supporting information) indicative of a

general east–west gradient in genetic diversity. There

were no significant correlations between genetic diver-

sity variables and latitude, tire distance or distance

from the nearest highway. There were also no signifi-

cant correlations between landscape variables and mean

allelic richness standardized to the smallest sample size

(N = 16).

Mantel tests at the larger spatial scale, across all pop-

ulation groups, revealed that isolation by geographic

distance explains approximately 25% of the variation in

FST for the whole pairwise matrix (r = 0.496, P = 0.001).

Both elevational separation and distance along roads

show a much smaller value for r once geographic dis-

tance is accounted for (r = 0.376, P = 0.001 vs. partial

r = 0.119, P = 0.057 for elevation; r = 0.507, P = 0.001

vs. partial r = 0.142, P = 0.023 for roads) although in

the case of roads, it was still significant, indicating that

roads have an additive effect on genetic connectivity

that cannot be explained by geographic distance alone.

In the subset of pairwise comparisons within water-

sheds, streams showed a small but significant correla-

tion with FST (r = 0.417, P = 0.041) but this ceased to be

significant once geographic distance was controlled for

(partial r = 0.282, P = 0.164). These Mantel findings

were supported by the MRDM analysis with

commonality coefficients (Table 3) which found that the

road matrix coefficient remained a significant predictor

in a model accounting for geographic distance, and fur-

ther, that roads uniquely contributed 7.54% towards the

R2 on top of what it shared with geographic distance.

MRDM analyses also showed a lack of significant (and

unique) contribution by stream networks and elevation

distance matrices (Table 3). Spatial autocorrelation anal-

yses comparing within eastern (PA) vs. western (NY)

genetic clusters detected a significant positive autocorre-

lation in only the first distance class (≤5 km) for both

(rNY = 0.07, rPA = 0.05, both P = 0.001).

The Population Graph shows a well-connected topol-

ogy (Fig. 5A), suggesting there are no populations or

groups of populations that are highly isolated from

gene flow. The least-connected population is M10,

which shares significant covariance with only 2 nodes,

L2 and M4. Interestingly, these are not its closest neigh-

bours (Fig. 1B). There is further evidence for wide-

spread long-distance dispersal from the analysis shown

in Fig. 5B, where extended edges stretch between low-

and high-elevation populations, spanning the state. By

contrast, compressed edges between pairs of popula-

tions in the mountainous west side of the state indicate

possible barriers to gene flow (Fig. 3B, Fig. 1A,B).

Discussion

Across Virginia, there was a significantly greater pro-

portion of PA ancestry and associated mitotypes (‘PA

type’) in the east, at lower elevations, vs. a greater pro-

portion of NY ancestry and its associated mitotype (‘NY

type’) at higher elevations in the west. We found that

Fig. 3 Bar graph of the proportion of mitochondrial haplotypes

ordered by longitude (N = 96). X-axis is labelled with the end-

point of each bin. PA haplotypes are H9 and H12, the NY hap-

lotype is H1, and other haplotypes (not associated with either

original introduction) are H3, H4, H6 and H11 (see Fonseca

et al. 2001, 2010).

Fig. 4 Comparison of nuclear ancestry (defined by STRUCTURE

Q-scores >0.50 for each cluster) vs. mitochondrial haplotypes

in Virginia populations showing a greater introgression of PA

haplotypes into NY nuclear genotypes than the reverse. Colour

designations for haplotypes follow Fig. 3. Prior to mixing

between the NY and PA introductions, haplotypes H9 and H12

were exclusively found in PA nuclear genotypes, while haplo-

type H1 was exclusively found in NY nuclear genotypes.

© 2016 John Wiley & Sons Ltd
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the nuclear/mitochondrial associations from the origi-

nal introductions have been largely maintained in Vir-

ginia despite the fact that admixture between the two

was detectable as early as 2002 in more northern states

(Fonseca et al. 2010). These results suggest at least two

separate introductions into Virginia of populations

broadly similar to the original PA and NY types, and

subsequent expansion and mixing along a contact zone

within Virginia, contrary to our original expectation

that individuals with mixed NY-PA heritage simply dif-

fused south. The former scenario of separate introduc-

tions is further supported by the fact that

Ae. j. japonicus was first detected in Virginia in 2000 in

the east (Harrison et al. 2002) and early populations had

a strong PA signature (D.M. Fonseca, unpublished

data). The east–west gradient in genetic diversity (lower

diversity in the eastern part of the state) also supports

this conclusion, as the original population that estab-

lished in Pennsylvania had significantly lower genetic

diversity than the New York population (Fonseca et al.

2010).

Model selection algorithms consistently chose models

containing distance from I-95 as best explaining PA

ancestry, suggesting a possible avenue for its expansion

(Pennsylvania and Virginia are connected by this high-

way). Because I-95 is itself correlated with longitude,

temperature and elevation, we must be cautious in our

interpretation of its significance; however, it remains

plausible as an expansion pathway given that other

expansions of invasive insects have been linked to this

Table 3 Results from multiple regression on distance matrices (MRDM) analysis with commonality coefficients conducted using the

CAonDM() script by Prunier et al. (2015) on response variable pairwise FST. Plotted residuals met assumptions of normality, and

therefore, option 1 was selected (linear regression)

Model Model R2 Model P Predictor Beta P U (%) C (%) T

Roads 0.266 0.0001 Roads 1.499 0.0283 0.0200 (7.54) 0.2369 (89.12) 0.2569

GD �0.997 0.1422 0.0089 (3.33) 0.2369 (89.12) 0.2458

Elevation 0.260 0.0001 Elevation 0.1436 0.1120 0.0142 (5.46) 0.1268 (48.78) 0.1410

GD 0.4156 0.0001 0.1190 (45.76) 0.1268 (48.78) 0.2458

Streams 0.253 0.0001 Streams �0.089 0.1351 0.0069 (2.74) 0.0017 (0.067) 0.0086

GD 0.5263 0.0001 0.2441 (96.59) 0.0017 (0.067) 0.2458

GD stands for ‘geographic distance’ based on coordinates. P values result from a significance test with 10 000 permutations.

U = unique contribution of each predictor, C = common contribution (shared among predictors), and T = total contribution of each

predictor to the model fit. Significant P values are bolded.

Fig. 5 (A) Network graph of population

groupings of Aedes j. japonicus in Vir-

ginia. Nodes are coloured by elevation

(black = high, grey = mid, white = low),

and node size is proportional to within-

population variation. Lines connecting

nodes are called edges and represent sig-

nificant covariance between the two

nodes, such as gene flow between popu-

lations. (B) Map of Virginia and popula-

tion grouping mid-points with

compressed (black dashed lines) and

extended (grey solid lines) edges. Com-

pressed edges indicate significantly less

genetic similarity than expected given

their geographic distance, while extended

edges indicate greater similarity than

expected given their distance.
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highly trafficked corridor in Virginia (e.g. Fall canker-

worm, Asaro & Chamberlin 2015). Additionally, within

Pennsylvania the PA Ae. j. japonicus type was originally

associated with military bases – populations from dif-

ferent bases being more similar to each other than to

populations just outside the base (Fonseca et al. 2010) –
and all five of Virginia’s largest military bases are at

low elevations, in the east and close to I-95. By contrast,

the mode and pathways of introduction of the NY type

into Virginia are less clear: this type was originally most

common in New York, New Jersey and Connecticut,

three coastal states, so its presence in the western

mountains of Virginia was unanticipated. However,

there is some evidence for a long-distance translocation

of individuals with NY ancestry into eastern Ohio, as

early as 2000 (Fonseca et al. 2001). This part of Ohio is

connected to western Virginia by several highways

(such as Interstate 77), so the NY type could have

arrived in Virginia after travelling first to Ohio. The

asymmetric introgression of PA haplotypes (specifically,

H9) into NY nuclear genotypes could imply that the

NY type came to Virginia some years after the PA type,

once mixing had begun farther north. This is supported

by the fact that in 2002–2003, the NY type from Ohio

had begun mixing with PA types in western Pennsylva-

nia (Fonseca et al. 2010). However, asymmetric intro-

gression of mitochondrial haplotypes can result from a

multitude of factors, including disparate population

sizes (Toews & Brelsford 2012), and the presence of

compressed edges in the western part of the state sug-

gests populations with NY nuclear ancestry may be

more isolated from each other (i.e. smaller effective

population size). Finally, although we did not find an

association between genetic diversity and the distance

from used tire vendors this could be due to our failure

to identify all possible locations of used tire imports

(such as those discarded in dumps and waste piles).

The association of Ae. j. japonicus with tires is well sup-

ported by other lines of evidence (Bartlett-Healy et al.

2012; Kampen & Werner 2014).

As is made clear by the above discussion, we found

that Ae. j. japonicus routinely capitalizes on human

transport to travel large distances quickly, which would

not be possible for them to do autonomously. It is well

known that introductions of invasive mosquitoes into

new locations are associated with human traffic, pri-

marily cargo ships (Lounibos 2002). However, our anal-

ysis reveals that Ae. j. japonicus has continued to exploit

humans as their main mode of travel on a more local

scale, during their secondary expansion: proximity

along roads explained additional variation in genetic

distance not explained by geographic distance alone.

Additionally, populations on opposite sides of the state

(well beyond the dispersal capability of mosquitoes)

were more similar than expected by chance (Fig. 5).

Despite the possibility of streams acting as dispersal

corridors for adults of this species (Bevins 2007), we

found no effect of stream distance on genetic distance.

While our ability to detect autonomous dispersal may

have been limited in some of the analyses by our use of

population groupings, autocorrelation performed on

individual specimens did detect evidence of diffusion

but only at very short distances (<5 km). Adults of

other invasive Aedes species have also been found to be

weak flyers with self-powered abilities of a kilometre or

less based on mark–recapture studies (Niebylski &

Craig 1994; Russell et al. 2005; Marini et al. 2010). A clo-

sely monitored population of Ae. j. japonicus that estab-

lished in Belgium in 2002 was unable to expand beyond

one tire recycling centre in over 10 years (Damiens et al.

2014). While the presence of compressed edges in the

Appalachian region indicates the mountains are acting

as a barrier to gene flow, they may be primarily

because they act as barriers to human vehicular traffic.

Our results strongly indicate that the main mode of

expansion of Ae. j. japonicus has been human-mediated.

Many studies of mosquito population genetics have

invoked human-aided long-distance dispersal (LDD) as

an explanation for low genetic differentiation between

geographically distant populations (Lehmann et al.

1996; Huber et al. 2004; Brown et al. 2011; Brelsfoard &

Dobson 2012; Damal et al. 2013) although fewer have

explicitly tested the effects of human transportation on

the spread of an invasive species (but see Fonzi et al.

2015 regarding boat traffic among islands). Medley et al.

(2014) studied the effects of land cover types on the US

expansion of another aggressive invader, Aedes albopic-

tus, using nine microsatellite loci. They examined pat-

terns across a much larger spatial scale than ours

(across its entire central-eastern distribution, 1–3 sample

points per state) and found the best-fit models for

genetic distance at broad spatial scales contained an

array of landscape factors including highways. At smal-

ler scales, agricultural landscapes and forests appeared

to limit gene flow leading to the conclusion that Ae. al-

bopictus disperse autonomously at these smaller scales.

However, due to the scale of their study we note that

these ‘smaller’ spatial scales would still require mosqui-

toes to self-transport hundreds of kilometres across

states, and we argue that large swathes of agricultural

lands and forests also act as a barrier to vehicular traf-

fic, reconciling their results with ours.

Interestingly, contrary to our previous findings of the

strong influence of elevation (probably due to the

effects of temperature) on Ae. j. japonicus genetic pat-

terns in Hawaii (Egizi & Fonseca 2014), we did not find

a strong elevational pattern in Virginia that could not

also be explained by other factors (like LDD +

© 2016 John Wiley & Sons Ltd
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admixture, see above). PA ancestry was better

explained by a sample’s proximity to I-95 than by eleva-

tion or temperature, and elevation was not better at

explaining genetic distance than geographic distance

alone. However, given the demonstrated negative

effects of high temperature on this species’ survival

(Scott 2003; Egizi et al. 2014), we are hesitant to rule out

any effect of elevation on this species in Virginia. For

example, it is possible that the east–west gradient we

observed could actually reflect differential responses to

temperature among the two genetic types (e.g. both

types were introduced at low elevations multiple times

but PA alone was able to establish). Alternatively, it is

possible that the relatively weak elevational gradient in

Virginia (compared to the steep flanks of the Hawaiian

volcanoes, where we did see an effect of elevation), cou-

pled with much greater gene flow from nearby states

and fewer generations per year (due to winter) have

resulted in overall weaker selective pressures in Vir-

ginia compared with Hawaii, despite the introduction

to Hawaii likely being more recent. Common garden

experiments profiling the temperature tolerances of

low- vs. high-elevation populations in Hawaii and Vir-

ginia can help to untangle these hypotheses of local

adaptation and differential selection.

Overall, we conclude that Ae. j. japonicus has been

able to achieve a rapid and extensive secondary expan-

sion primarily through exploitation of human-assisted

transportation across multiple spatial scales, both within

and across states. By contrast, its autonomous dispersal

capabilities appear localized and limited as evidenced

by its failure to expand in Belgium (Damiens et al.

2014). We propose that a pattern of human-enabled sec-

ondary expansion even over short distances may be a

common thread in successful mosquito invasions. The

idea that an invasive mosquito may be mostly or

entirely reliant on humans for its secondary dispersal

stands in contrast to several definitions of the term ‘in-

vasive species’ that presuppose a species capable of

expanding by its own agency postestablishment (Ehr-

lich 1986; Falk-Petersen et al. 2006; Simberloff 2010).

Importantly, we argue that movement by/with humans

can shape a species’ expansion in ways that autono-

mous spread cannot; specifically, it can lead to large-

scale admixture between locally adapted populations

and potentially greater evolutionary flexibility (genetic

diversity and novel genotypes) on which natural selec-

tion can act (Suarez & Tsutsui 2008; Schierenbeck & Ell-

strand 2009). Selection could then favour traits that

enhance a species’ ability to invade (Keller & Taylor

2010) and, in the case of mosquitoes, traits that alter

their ability to harbour pathogens and interact with

hosts. In this manner, human transport could continue

to play a pivotal role even postestablishment, by

altering vectorial capacity and thus creating the poten-

tial for vectorborne disease outbreaks. This result has

far-reaching implications for disease prevention, and

may require a paradigm shift from vector control as a

responsibility of communities towards individual

responsibility (such as taking care to disinsect water-

holding containers prior to long-distance transport).
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